skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dasgupta, Shib S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Personalized item recommendation typically suffers from data sparsity, which is most often addressed by learning vector representations of users and items via low-rank matrix factorization. While this effectively densifies the matrix by assuming users and movies can be represented by linearly dependent latent features, it does not capture more complicated interactions. For example, vector representations struggle with set-theoretic relationships, such as negation and intersection, e.g. recommending a movie that is “comedy and action, but not romance”. In this work, we formulate the problem of personalized item recommendation as matrix completion where rows are set-theoretically dependent. To capture this set-theoretic dependence we represent each user and attribute by a hyper-rectangle or box (i.e. a Cartesian product of intervals). Box embeddings can intuitively be understood as trainable Venn diagrams, and thus not only inherently represent similarity (via the Jaccard index), but also naturally and faithfully support arbitrary set-theoretic relationships. Queries involving set-theoretic constraints can be efficiently computed directly on the embedding space by performing geometric operations on the representations. We empirically demonstrate the superiority of box embeddings over vector-based neural methods on both simple and complex item recommendation queries by up to 30% overall. 
    more » « less
    Free, publicly-accessible full text available February 15, 2026